Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 16, 2026
-
Free, publicly-accessible full text available March 12, 2026
-
Zinc dialkyldithiophosphate (ZDDP), the most widely used antiwear additive in engine oils, has been extensively studied over the last few decades to help understand the origin of its effectiveness. Glassy phosphate-based tribofilms, approximately 100 nm thick, are often formed on surfaces sliding in ZDDP-containing oils, which help to prevent or reduce wear. Recent studies reveal that a combination of applied shear and compressive stresses drive mechanochemical reactions that promote tribofilm growth, and that growth is further accelerated by increased temperature. While recent work has shown that compressive stress alone is insufficient to form tribofilms, the individual effects of the shear stress and compressive stress are not fully understood. Here, shear and compressive stresses are studied separately by using different ratios of high-viscosity, high-traction fluids for testing. This allows the areal mean compressive and shear stresses in the fluid when confined at a loaded sliding interface, to be independently controlled while driving tribofilm growth, which is a system we refer to as a stress-controlled mechanochemical reactor. Tribofilms derived from a secondary ZDDP were generated using a tungsten carbide/tungsten carbide ball-on-disk contact in the full elastohydrodynamic lubrication (EHL) regime using a mini-traction machine (MTM), meaning that solid–solid contact is avoided. The MTM was equipped with a spacer layer imaging (SLIM) capability, permitting in situ measurement of the tribofilm thickness during its growth. The well-separated sliding surfaces generated by the high-viscosity fluids confirm that solid–solid contact is not required for tribofilm formation. Under these full fluid film EHL conditions, shear stress and temperature promote tribofilm growth in accordance with stress-augmented thermal activation. In contrast, under constant shear stress and temperature, compressive stress has the opposite effect, inhibiting tribofilm growth. Using the extended Eyring model for shear- and hydrostatic pressure-affected reaction kinetics, an activation energy of 0.54 ± 0.04 eV is found, consistent with prior studies of ZDDPs. The activation volume for shear stress is found to be 0.18 ± 0.06 nm 3 , while that for the compressive stress component is much smaller, at 0.010 ± 0.004 nm 3 . This not only confirms prior work supporting that shear stress drives tribofilm growth, but demonstrates and quantifies how compressive stress inhibits growth, consistent with the rate-limiting step in tribofilm growth involving a bond-breaking reaction. Implications of these findings are discussed.more » « less
-
Abstract The behavior of materials in sliding contact is challenging to determine since the interface is normally hidden from view. Using a custom microfabricated device, we conduct in situ, ultrahigh vacuum transmission electron microscope measurements of crystalline silver nanocontacts under combined tension and shear, permitting simultaneous observation of contact forces and contact width. While silver classically exhibits substantial sliding-induced plastic junction growth, the nanocontacts exhibit only limited plastic deformation despite high applied stresses. This difference arises from the nanocontacts’ high strength, as we find the von Mises stresses at yield points approach the ideal strength of silver. We attribute this to the nanocontacts’ nearly defect-free nature and small size. The contacts also separate unstably, with pull-off forces well below classical predictions for rupture under pure tension. This strongly indicates that shearing reduces nanoscale pull-off forces, predicted theoretically at the continuum level, but not directly observed before.more » « less
-
Several key features of nanoscale friction phenomena observed in experiments, including the stick-slip to smooth sliding transition and the velocity and temperature dependence of friction, are often described by reduced-order models. The most notable of these are the thermal Prandtl–Tomlinson model and the multibond model. Here we present a modified multibond (mMB) model whereby a physically-based criterion—a critical bond stretch length—is used to describe interfacial bond breaking. The model explicitly incorporates damping in both the cantilever and the contacting materials. Comparison to the Fokker–Planck formalism supports the results of this new model, confirming its ability to capture the relevant physics. Furthermore, the mMB model replicates the near-logarithmic trend of increasing friction with lateral scanning speed seen in many experiments. The model can also be used to probe both correlated and uncorrelated stick slip. Through greater understanding of the effects of damping and noise in the system and the ability to more accurately simulate a system with multiple interaction sites, this model extends the range of frictional systems and phenomena that can be investigated. This article is part of the theme issue ‘Nanocracks in nature and industry’.more » « less
An official website of the United States government
